
�

�
�

�

��������� 	
��
�
��
��
�

PANNIER UNIVERSAL DATA STREAM PROTOCOL

This document describes the structure of Pannier’s Universal Data Stream protocol and each of the
possible parameters. The Universal Data Stream is used by the host systems to send tag data for each
print job. The Universal Data Stream provides the user with a means to select any format loaded in the
printer, supply specific data for any object in that format, print a series of sequenced tags and/or print
multiple copies of the same tag, have an Email sent when the last tag of a print job is complete, and have
the tags presented for break-off after the last tag of a print job is complete. A sample tag and two sample
data streams are provided as examples for printing tags.

Described below is the structure of the data stream protocol. Repeatable parameters are denoted by the double [[]]
brackets and optional parameters are denoted by the single [] brackets framing them. Bold text indicates required text if
that parameter is used. The system will maintain the last values passed for an Object until the application is shut down.
Therefore, if an object is ever to be in the data stream, it should always be included along with each object parameter (M,
V, and I) that will be used.

{Format Name~
 [Nvalue~]
 [Dvalue~]
 [Evalue~]
 [Pvalue~]`
 [[Object Name~
 [Mvalue~]
 [Vvalue~]
 [Ivalue~]
 `]]
}

Symbol Parameter Description

{ Start of Data Stream
Identifier

The left cursive bracket ({) character is used to identify the beginning of each data
stream.

Format
Name

Name of Format to
Print

Identifies the name of the format that you want to print.

Nvalue Number of Sequenced
Tags Parameter

The N identifies the parameter that states the number of sequenced tags that are to
be produced by this data stream. The value following this identifier is the number
of sequenced tags to mark of the specified tag. If this parameter is included it
must contain a value from 1 to 2000. If a value greater than 1 is entered then a
series of tags (quantity specified by this value) will be produced by the printer
from this one data stream received from the host system. The first tag will contain
the values specified in the data stream. Any object that contains a non-zero value
for the Increment Parameter will be modified by that parameter value after each
sequenced tag is printed. If this parameter is not in the data stream, then its value
is 1 by default.

�

�

�

�

��������� 	
��
�
��
��
�

Dvalue Number of Duplicate
Tags (Copies)
Parameter

The D identifies the parameter that states the number of copies to print for each
tag. The value following this identifier is the number of copies of this tag to print.
If this parameter is included it must contain a value from 1 to 100. If a series of
sequenced tags are being printed, then this quantity of duplicate tags will be
printed before the objects are incremented or decremented for the sequenced tags.
If this parameter is not in the data stream, then its value is 1 by default.

Evalue Send Email after last
tag of job prints
Parameter

The E identifies the parameter that is one half of the two part flag that enables the
transmission of an Email message to indicate the completion of this print job. The
configuration file contains the other half of this two part flag. If both halves are
enabled, then an Email message will be sent to the designated Email address after
the last tag of this print job is complete. A value of 0 disables this half of the flag.
A value of 1 enables this half of the flag. If this parameter is not in the data
stream, then its value is 0 by default.

Pvalue Present Tags for
Break-off after last tag
of job prints Parameter

The P identifies the parameter that indicates whether to present the tags for break-
off after the last tag of the print job is complete. If the present tag method in the
configuration file is set to manual, then the data stream can determine when the
tags should be presented for break-off by including P1 as a parameter. If the
present tag method in the configuration file is set to automatic, then this parameter
is ignored so it should not be included. The present tag configuration parameters
indicating number of advances, present tag position, and recovery method will be
utilized when tags are presented through the data stream. A value of 1 enables tag
presenting for this job. A value of 0 defaults to the configuration parameters for
presenting tags. If no present tag method is indicated in the data stream, then the
present method in the configuration file will be used.

Object
Name

Object Name in Format
File

This identifies the object name in the format whose print value, increment value,
and/or mark value that you want to modify with the following three parameters.
If an object is not included in the data stream, it will use the last value supplied by
a data stream or the value that is specified in the tag format (if it was never
included in any data stream.)

Vvalue Object Value
Parameter

The V identifies the parameter that states the new value for the specified object.
The value following this identifier is the value that will be marked on the tag for
the object. This parameter is required for text, barcode, and 2D Code type field
objects. It should not be supplied for any other object types since they do not
have a displayed value associated with them.

Ivalue Object Value
Increment Parameter

The I identifies the parameter that states the increment/decrement value for the
specified object. The value following this identifier is the value to automatically
increment (positive number) or decrement (negative number) a text or barcode
type object. This is the value that will be added/subtracted from this object’ value
after each sequenced tag is printed. If the value for this object does not change,
then you should omit this parameter since it defaults to 0.

Mvalue Object Mark Parameter The M identifies the parameter that states the mark state of the specified object.
The value following this identifier indicates whether the object should be printed
on the tag. If an object is always marked then this parameter should be omitted
since its initial default value is to mark.. If an object is marked only some of the
time on a particular format then this parameter is required all of the time since the
last value for marking is maintained from tag to tag. This parameter is commonly
used for picture objects (bitmaps or vector images) that are only printed on a tag
format under certain conditions. The only valid values for this parameter are: 1 –
Mark and 0 - No Mark. The initial state for all objects is to mark.

�

�

�

�

��������� 	
��
�
��
��
�

~ End of Parameter
Identifier

The tilde symbol (~) character is used to denote the end of each parameter value.

` End of Object
Identifier

The backwards quote (accent grave) (`) character is used to denote the end of the
format parameters and the end of each object’s parameters.

} End of Data Stream
Identifier

The right cursive bracket (}) character is used to indicate the end of each data
stream.

The following data stream sample is representative of the data stream that you will need to send in order to produce the
tag format(s) configured for you. Each object’s parameters have been placed on a new line for readability and numbered
for reference. The actual data stream sent to the printers must not contain any unwanted spaces. Spaces that are part of
the variable data are allowed. Carriage returns <CR> and line feeds <LF> must be used carefully. If they are placed
within the value then they will become part of that value. If tier text is required, then <CR><LF> are needed in the value.
They must be placed between each character so the characters will be placed one on top or the other. If the <CR><LF> is
placed outside of a value then they will be ignored. All control characters except for Group Separator (GS), Record
Separator (RS), and End of Transmission (EOT) are ignored. If UID is not enabled on this system, then the GS, RS, and
EOT will also be ignored. Extended ASCII characters are allowed and will be printed as long as the font for that object
contains the character.

The first set of parameters designates the tag format name, the number of tags to produce, the number of copies of that tag
format, one half of enabling an email after the print job is complete, and whether to present tags for break-off after the last
tag of the print job is complete. If a format parameter is not shown, then the default value for that parameter will be used.
The subsequent sets of parameters designate the objects that need to change, along with their respective value, increment
value, and/or marking value. If an object parameter is not shown, then the last value provided for that parameter will be
used. If no value was ever provided for a format parameter, then the initial default value for that format parameter will be
used. The underlined text in the examples below designates the variable data for that tag. All other data in the data
stream for that tag is fixed text.

�

�

�

�

�

��������� 	
��
�
��
��
�

The following is an example of the data stream for the Pannier1 tag format shown above. It contains values for all object
fields that change. The object fields that are not addressed by the data stream are static values that never change on the
tag, therefore they do not need to be supplied in the data stream. This data stream will print one tag using the values in the
data stream.

1. {Pannier1~`
2. txtHeat~V123456~`
3. txtStrand~V1~`
4. txtBillet~V01~`
5. txtGrade~VA01~`
6. dmDM~V123456-1-01~`
7. txtSort~V34~`
8. bmpPannierLogoBW~M0~`
9. bmpPannierLogoGS~M1~`
10. pltPannierLogo~M0~`
11. txtCompany~VPannier Corporation~`
12. bc3of9~V123456 1 01~`
13. txtSpecial1~V@A~`
14. txtBCVal~V«123456 1 01»~`
15. txtSpecial2~VŒ~`
16. }

The following data stream example demonstrates the capability of sending down one data stream to have multiple tags
printed. This data stream will produce 50 tags. The data stream will produce two copies of 25 different tags where the
bc3of9, txtBarcodeValue, and txtBillet objects increment by 1 after the two copies of each tag are printed. The data
stream indicates that the tags are to be presented for break-off after the last tag is printed. The Email parameter is not
indicated in this data stream so no emails will be sent. The first tag will utilize the values sent in the data stream and then
increment/decrement the object’s values for each following tag. When incrementing, character types are maintained by
column position. Therefore, a “9” will roll over to a “0”, a “z” will roll over to an “a”, and a “Z” will roll over to an “A”.
Decrementing is the exact opposite. Columns that do not contain incrementable characters will maintain that character.
Any column value that rolls over will search left until it finds the first incrementable character.

1. {Pannier1~N25~D2~P1~`
2. txtHeat~V123456~`
3. txtStrand~V1~`
4. txtBillet~V01~I1~`
5. txtGrade~VA01~`
6. dmDM~V123456-1-01~I1~`
7. txtSort~V34~`
8. bmpPannierLogoBW~M0~`
9. bmpPannierLogoGS~M1~`
10. pltPannierLogo~M0~`
11. txtCompany~VPannier Corporation~`
12. bc3of9~V123456 1 01~I1~`
13. txtSpecial1~V@A~`
14. txtBCVal~V«123456 1 01»~I1~`
15. txtSpecial2~VŒ~`
16. }

�

�

�

�

��������� 	
��
�
��
��
�

Oversized (Two-Part) Tags

If the tag size you want to use is longer than the marking window of the laser printer you are using, PLUS3 (which is
4.75”) / LT-21 (which is 8.0”), then you must create two paired formats in order to mark on the whole tag. A single tag
format can only mark on the first or last 4.75” / 8” of the tag. Tags can be positioned at the top of tag or bottom of tag
positions. Tags that are less than 9” / 16” in length have an overlap area in the middle, which can be marked in either the
top or bottom of tag position. Any single object (text, barcode, graphic, etc.) must be marked in one of those halves. No
single object can be split between the two halves. A single text value that is larger than the marking window can be split
up into multiple text objects if the data can be sent from the host system or entered manually as a split up value.

Formats that are used for two part tags must be named the same except for the last 4 characters of the name. The last for
characters must use the reserved characters “1of2” and “2of2”. When those last four characters are seen in a tag format
name, this designates that these formats are part of a two-part tag. If we are developing a two-part test tag the names of
the two formats could be “LargeTag1of2.mkh” and “LargeTag2of2.mkh”.

The object names between the two formats must be unique. No two objects can have the same name or you will receive
an error when you try to print a two-part tag manually. If multiple oversized tags, emails, or presented tags are desired,
those format parameters must be specified in the first half (1of2) data stream. The format parameters are ignored in the
second half (2of2) data stream.

Data streams for the two-part tags must be sent down in pairs. The data stream for the first half must be sent down first,
followed by the data stream for the second half. Even though these are two different formats, the laser printer software
waits for data streams for both halves to arrive before it will begin printing the tag. If the data streams are not received in
the proper order or only one of them is received, the printer will generate a data stream error.

A data stream example of an oversized tag is shown below. This example will print one oversized tag.

1. {LargeTag1of2~ `
2. txtLeftVal~VLARGE TAG 1 OF 2 (LEFT SIDE)~`}

3. {LargeTag2of2~`
4. txtRightVal~VLARGE TAG 2 OF 2 (RIGHT SIDE)~`}

